Звезды.

  • Астрономия в арабском Халифате
  • Астрономия в средней Азии
  • Астрономия древних цивилизаций
  • Астрономия каменного века
  • Астрономия на глиняных табличках
  • Геоцентрическая система мира
  • История одной обсерватории
  • Обоснование инерциальной системы координат в атсрономии
  • Российская астрономия в эпоху Петра I
  • Стоунхендж
  • Телескопы
  • Астероиды вблизи Земли
  • Движение астероидов
  • Имена астероидов
  • Немного истории
  • Общие сведения
  • Пояс астероидов
  • Семейства астероидов
  • Состав астероидного вещества
  • Температура астероидов
  • Форма и вращение астероидов
  • Формирование астероидов
  • Виртуальный планетарий на ПК
  • Внеземные цивилизации
  • Вселенная расширяется
  • Детальные изображения галактики Андромеды
  • Метагалактика
  • Млечный путь
  • Многообразие галактик
  • Наша звездная система Галактика
  • Неправильные галактики
  • Самая большая галактика
  • Спирали с перемычками
  • Спиральные галактики
  • Темные галактики
  • Эволюция галактик
  • Эллиптические галактики
  • Звездная карта северного полушария
  • Звездная карта южного полушария
  • Белые карлики
  • Блеск звезд
  • Будущее солнца
  • Газопылевые облака
  • Гибель массивных звезд
  • Двойные Звезды
  • Из чего образуются звезды
  • Как заметить вращение звездного неба
  • Какие звезды рождаются
  • Квазары
  • Конец жизни немассивных звезд
  • Нейтронные звёзды
  • Новый тип звезд
  • Облако становится звездой
  • Причины вращения звездного неба
  • Пульсары
  • Рождение звезд
  • Сверхновые
  • Системы звёзд
  • Суточное движение звезд
  • Температура, светимость и цвет звезды
  • Химический состав звёзд
  • Цефеиды
  • Александр Александрович Михайлов
  • Анаксагор
  • Анаксимандр Милетский
  • Андрей Борисович Северный
  • Араго Доминик Франсуа
  • Аристарх Аполлонович Белопольский
  • Аристотель
  • Армстронг Нил
  • Артур Стенли Эддингтон
  • Архимед
  • Бируни
  • Браге Тихо
  • Василий Яковлевич Струве
  • Вильгельм Гершель
  • Галилео Галилей
  • Гиппарх
  • Григорий Абрамович Шайн
  • Гуревич Лев Эммануилович
  • Гюйгенс Христиан
  • Джеймс Хопвуд Джинс
  • Джордано Бруно
  • Евдокс Книдский
  • Иноходцев Петр Борисович
  • Иоганн Кеплер
  • Исаак Ньютон
  • Кристиан Доплер
  • Ломоносов Михаил Васильевич
  • Николай Коперник
  • Отто Юльевич Шмидт
  • Павел Карлович Штернберг
  • Парменид
  • Пифагор
  • Платон Афинский
  • Толемей Клавдий
  • Урбен Жан Жозеф Леверье
  • Фалес Милетский
  • Федор Александрович Бредихин
  • Фридрих Вильгельм Бессель
  • Харлоу Шепли
  • Эдвин Пауэлл Хаббл
  • Эратосфен
  • Андромеда
  • Близнецы
  • Большая Медведица
  • Большой Пес
  • Весы
  • Водолей
  • Возничий
  • Волк
  • Волопас
  • Волосы Вероники
  • Ворон
  • Геркулес
  • Гидра
  • Голубь
  • Гончие Псы
  • Дева
  • Дельфин
  • Дракон
  • Единорог
  • Жертвенник
  • Живописец
  • Жираф
  • Журавль
  • Заяц
  • Змееносец
  • Змея
  • Золотая Рыба
  • Индеец
  • Кассиопея
  • Киль
  • Кит
  • Козерог
  • Компас
  • Корма
  • Лебедь
  • Лев
  • Летучая Рыба
  • Лира
  • Лисичка
  • Малая Медведица
  • Малый Конь
  • Малый Лев
  • Малый Пес
  • Микроскоп
  • Муха
  • Насос
  • Наугольник
  • Овен
  • Октант
  • Орел
  • Орион
  • Павлин
  • Паруса
  • Пегас
  • Персей
  • Печь
  • Райская Птица
  • Рак
  • Резец
  • Рыбы
  • Рысь
  • Северная Корона
  • Секстант
  • Сетка
  • Скорпион
  • Скульптор
  • Столовая Гора
  • Стрела
  • Стрелец
  • Телескоп
  • Телец
  • Треугольник
  • Тукан
  • Феникс
  • Хамелеон
  • Центавр
  • Цефей
  • Циркуль
  • Часы
  • Чаша
  • Щит
  • Эридан
  • Южная Гидра
  • Южная Корона
  • Южная Рыба
  • Южный Крест
  • Южный Треугольник
  • Ящерица
  •  


    Нейтронные звёзды.

    Реклама:

     

    Звёзды, у которых масса в 1,5-3 раза больше, чем у Солнца не смогут в конце жизни остановить своё сжатие на стадии белого карлика. Мощные силы гравитации сожмут их до такой плотности, при которой произойдёт «нейтрализация» вещества: взаимодействие электронов с протонами привёдёт к тому, что почти вся масса звезды будет заключена в нейтронах. Образуется нейтронная звезда. Наиболее массивные звёзды могут обраться в нейтронные, после того как они взорвутся как сверхновые.

    Концепция нейтронных звёзд не нова: первое предположение о возможности их существования было сделано талантливыми астрономами Фрицем Цвикки и Вальтером Баарде из Калифорнии в 1934г. (несколько раньше в 1932г. возможность существования нейтронных звёзд была предсказана известным советским учёным Л. Д. Ландау.) В конце 30-х годов она стала предметом исследований других американских учёных Оппенгеймера и Волкова. Интерес этих физиков к данной проблеме был вызван стремлением определить конечную стадию эволюции массивной сжи- мающейся звезды.

    Так как роль и значение сверхновых вскрылись примерно в то же время, было высказано предположение, что нейтронная звезда может оказаться остатком взрыва сверхновой. К несчастью, с началом второй мировой войны внимание учёных переключилось на военные нужды и детальное изучение этих новых и в высшей степени загадочных объектов было приостановлено. Затем, в 50-х годах, изучение нейтронных звёзд возобновили чисто теоретически с целью установить, имеют ли они отношение к проблеме рождения химических элементов в центральных областях звёзд. Нейтронные звёзды остаются единственным астрофизическим объектом, существование и свойства которых были предсказаны задолго до их открытия.

    В начале 60-х годов открытие космических источников рентгеновского излучения весьма обнадёжило тех, кто рассматривал нейтронные звёзды как возможные источники небесного рентгеновского излучения. К концу 1967г. был обнаружен новый класс небесных объектов — пульсары, что привело учёных в замешательство. Это открытие явилось наиболее важным событием в изучении нейтронных звёзд, так как оно вновь подняло вопрос о происхождении космического рентгеновского излучения. Говоря о нейтронных звёздах, следует учитывать, что их физические характеристики установлены теоретически и весьма гипотетичны, так как физические условия, существующие в этих телах, не могут быть воспроизведены в лабораторных экспериментах.

    Решающее значение на свойства нейтронных звёзд оказывают гравитационные силы. По различным оценкам, диаметры нейтронных звёзд составляют 10-200 км. И этот незначительный по космическим понятиям объём «набит» таким количеством вещества, которое может составить небесное тело, подобное Солнцу, диаметром около 1,5 млн. км, а по массе почти в треть миллиона раз тяжелее Земли! Естественное следствие такой концентрации вещества — невероятно высокая плотность нейтронной звезды. Фактически она оказывается настолько плотной, что может быть даже твёрдой. Сила тяжести нейтронной звезды столь велика, что человек весил бы там около миллиона тонн. Расчёты показывают, что нейтронные звёзды сильно намагничены.

    Согласно оценкам, магнитное поле нейтронной звезды может достигать 1млн. млн. гаусс, тогда как на Земле оно составляет 1 гаусс. Радиус нейтронной звезды принимается порядка 15 км, а масса — около 0,6 — 0,7 массы Солнца. Наружный слой представляет собой магнитосферу, состоящую из разрежённой электронной и ядерной плазмы, которая пронизана мощным магнитным полем звезды. Именно здесь зарождаются радиосигналы, которые являются отличительным признаком пульсаров. Сверхбыстрые заряженные частицы, двигаясь по спиралям вдоль магнитных силовых линий, дают начало разного рода излучениям. В одних случаях возникает излучение в радиодиапазоне электромагнитного спектра, в иных — излучение на высоких частотах. Почти сразу же под магнитосферой плотность вещества достигает 1 т/см3, что в 100 000 раз больше плотности железа.

    Следующий за наружным слой имеет характеристики металла. Этот слой «сверхтвёрдого» вещества, находящегося в кристаллической форме. Кристаллы состоят из ядер атомов с атомной массой 26 — 39 и 58 — 133. Эти кристаллы чрезвычайно малы: чтобы покрыть расстояние в 1 см, нужно выстроить в одну линию около 10 млрд. кристалликов. Плотность в этом слое более чем в 1 млн. раз выше, чем в наружном, или иначе, в 400 млрд. раз превышает плотность железа. Двигаясь дальше к центру звезды, мы пересекаем третий слой. Он включает в себя область тяжёлых ядер типа кадмия, но также богат нейтронами и электронами. Плотность третьего слоя в 1 000 раз больше, чем предыдущего.

    Глубже проникая в нейтронную звезду, мы достигаем четвёртого слоя, плотность при этом возрастает незначительно — примерно в пять раз. Тем не менее при такой плотности ядра уже не могут поддерживать свою физическую целостность: они распадаются на нейтроны, протоны и электроны. Большая часть вещества пребывает в виде нейтронов. На каждый электрон и протон приходится по 8 нейтронов. Этот слой, по существу, можно рассматривать как нейтронную жидкость, «загрязнённую» электронами и протонами. Ниже этого слоя находится ядро нейтронной звезды. Здесь плотность примерно в 1,5 раза больше, чем в вышележащем слое. И тем не менее даже такое небольшое увеличение плотности приводит к тому, что частицы в ядре движутся много быстрее, чем в любом другом слое.

    Кинетическая энергия движения нейтронов, смешанных с небольшим количеством протонов и электронов, столь велика, что постоянно происходят неупругие столкновения частиц. В процессах столкновения рождаются все известные в ядерной физике частицы и резонансы, которых насчитывается более тысячи. По всей вероятности, присутствует большое число ещё не известных нам частиц. Температуры нейтронных звёзд сравнительно высоки. Этого и следует ожидать, если учесть, как они возникают. За первые 10 — 100 тыс. лет существования звезды температура ядра уменьшается до нескольких сотен миллионов градусов. Затем наступает новая фаза, когда температура ядра звезды медленно уменьшается вследствие испускания электромагнитного излучения.

     








  • Космические рекорды
  • Космические трагедии
  • Поворотный пункт
  • Космические программы:
  • Великобритании
  • Индии
  • Китая
  • России
  • США
  • Японии
  • Космонавтика по странам:
  • Европы
  • Израиля
  • Китая
  • России
  • США
  • Украины
  • Международыне космические проекты
  • Полеты животных
  • Жизнь комет
  • Защита Земли от кометной опасности
  • Именитые кометы
  • История комет
  • Классификация комет
  • Начало исследования комет
  • Общие представления о кометах
  • Природа комет, их рождение, жизнь и смерть
  • Современные исследования
  • Строение, состав кометы
  • Физическая природа комет
  • Как падают метеориты
  • Как узнать метеорит
  • Метеорные потоки
  • Наблюдения метеоров
  • Общий вид и размеры метеоритов
  • Огненные шары болиды
  • Падающие звезды и метеориты
  • Падения и находки
  • Происхождение метеоритов
  • Тунгусский метеорит
  • Химия метеоритов
  • Приборы для наблюдения звездного неба:
  • Краткое руководство по выбору первого телескопа
  • Кто изобрел телескоп
  • Простейшие астрономические инструменты
  • Радиотелескопы и космические телескопы
  • Телескопы типы и устройство
  • Солнечная система:
  • Солнце
  • Меркурий
  • Венера
  • Земля
  • Марс
  • Пояс астероидов
  • Юпитер
  • Сатурн
  • Уран
  • Нептун
  • Плутон
  • Солнечные и лунные затмения
  • Туманности:
  • Общие сведения о туманностях
  • Туманность Андромеды
  • Туманность Конская Голова
  • Туманность Ориона
  • Учимся находить созвездия:
  • Малую медведицу, кассиопею и дракон
  • Лиру и цефей
  • Персея, андромеду и возничего
  • Созвездия близнецов, ориона, тельца, возничего, малого пса, большого пса
  • Созвездия льва и волопаса
  • Созвездия девы, ворона и другие
  • Созвездия лиры, лебедя, орла, дельфина, а также летне-осенний треугольник
  • Созвездия пегаса, козерога и водолея
  • Созвездия треугольника, овна и рыб
  • Созвездие южной рыбы и звезду фомальгаут
  • Созвездия зайца и эридана
  • Созвездия единорога, кормы и компаса
  • Черные дыры:
  • Звезда Черная дыра
  • Имитация чёрных дыр
  • Малая черная дыра
  • Образование черной дыры
  • Определение размеров черной дыры
  • Сверхмассивные черные дыры
  • Черная дыра в центре Млечного Пути
  • Чёрные дыры вращаются вокруг своей оси
  • Фотогалерея
  • Словарь астрономических терминов
  • Планета с самым большим количеством лун
  • Самая близкая галактика
  • Самая большая группа солнечных пятен
  • Самая большая луна
  • Самая ветреная планета в солнечной системе
  • Самая горячая звезда
  • Самая горячая планета
  • Самая далекая звезда нашей галактики
  • Самая короткоживущая звезда
  • Самая крупная галактика
  • Самая маленькая луна
  • Самая массивная черная дыра
  • Самая наблюдаемая комета
  • Самая сильная гравитационная линза во вселенной
  • Самая старая звезда
  • Самая старая из известных планет
  • Самая стремительная звезда
  • Самая удаленная галактика
  • Самая холодная звезда
  • Самая яркая галактика на небе
  • Самая яркая комета
  • Самая яркая новая
  • Самая яркая сверхновая
  • Самое близкое звездное скопление
  • Самое большое водородное облако во вселенной
  • Самое большое созвездие
  • Самое большое шаровое скопление
  • Самое длинное полное солнечное затмение
  • Самое маленькое созвездие
  • Самое распространенное вещество в межзвездном пространстве
  • Самое сильное магнитное поле звезды
  • Самое холодное место в солнечной системе
  • Самые большие солнечные протуберанцы
  • Самые быстрые вращения астрономических объектов
  • Самые яркие звезды
  • Самый близкий подход кометы к земле
  • Самый большой астероид
  • Самый большой лунный кратер
  • Самый большой оптический телескоп
  • Самый большой радиотелескоп
  • Самый высокий вулкан в солнечной системе
  • Самый далекий объект видимый невооруженным глазом
  • Самый мощный магнит вселенной
  • Самый сильный рентгеновский источник
  • Самый темный астероид
  • Самый удаленный квазар
  • Самый удаленный объект, видимый невооруженным глазом
  • Самый яркий астероид
  • Самый яркий астрономический объект
  • Самый яркий квазар
  • Самый яркий радиоисточник
  • Сверхмассивная чёрная дыра
  • Сверхплотные скопления галактик

  • © 2009 Kosmos.dljatebja.ru
    При использовании материалов сайта ссылка на источник обязательна!